Seat Number			PANKH-52
	BP-3	02-T	
	Physical Pha	rmaceutics.	1
Total Pages : 5]	(723	302)	
Time: 3 Hours			
		4146 65	Max Marks : 75
Note: (1) Do no	t write anything or	question pa	per except Seat No.
(2) All qu	estions are compuls	sory.	
. (3) Figure	es to the right indic	cate full mar	ks.
(4) Draw	well labelled diagra	m wherever	necessary.
(5) Graph	or diagram should	be drawn wit	h black ink pen being used
for wr	iting paper or black	k HB pencil.	• 10 - 10 - 10 -
. (A) Choose t	he <i>correct</i> answer of	the following	: 1×10=10
(i) If t	wo solutions have s	same osmotic	pressure, they are known
as			
(a)	Isobaric	(b)	Isotonic
(c)	Hypertonic	(d)	Hypotonic
(ii) One	of the following for	rm of solid sl	nows higher solubility than
othe	ers:		
(a)	Stable	(b)	Unstable
(c)	Metastable	(d)	All of these

All of these

(c)

P.T.O.

	(iii)	Liquefaction of gases can be achieved:					
		(a)	At high temperature				
		(b)	At low pressure				
		(c)	At constant temperature				
		<i>(d)</i>	At low temperature and high pressure				
(iv) The pH of pharmaceutical buffers can be calcula							
		(a)	Michaelis-Menten equation				
		(b)	pH partition theory				
		(c)	Noyes Whitney equation				
		(d)	Henderson-Hasselbalch	equation	1		
	(v)	Unit	Unit of surface tension is				
		(a)	N/m²	(b)	kg/cm		
		(c)	dyne/cm	(d)	dyne/cm ²		
	(vi)	Which of the following is unidentated?					
		(a)	Ammonia				
		<i>(b)</i>	Oxalate ion				
		(c)	EDTA				
		(<i>d</i>)	Ethylene diamine				
PANKH-5	2		2				

(vii)	In te	rms of pH, H indicate	es:						
	(a)	Haemoglobin	(b)	Helium					
	(c)	Hydrogen	(d)	Half					
(viii)	Solu	bility of substance de	pends upon	:					
	(a)	Solvent used							
	(b)	Temperature	11,						
	(c)	Pressure							
	(d)	(d) All of the above							
(ix)	Diffusion is measured by:								
	(a)	Franz cell							
	(b)	Voltameter							
	(c)	Rotating basket ap	paratus						
(x)	(d)	Viscometer							
	The	The unit of diffusion coefficient is:							
	(a)	cm/sq \times s ¹ /cm ² s ¹	(b)	$\mathrm{cm}^2\mathrm{s}^{-1}$					
	(c)	$\mathrm{cm}^2\mathrm{s}^{-2}$	(d)	$ m cm^2s^2$					

- (B) Answer the following questions:
 - (1) Define Kraft point.
 - (2) Define buffer capacity.
 - (3) State dipole moments and its significance.
 - (4) Define cutectic point and give one example of cutectic mixture.
 - (5) Define the term sublimation and boiling point.
- Solve any two:

 $2 \times 10 = 20$

- (1) What is interfacial phenomenon? Write different methods to determine surface tension and details. Explain any one method in detail.
- (2) Define polymorphism. Classify polymorphs and write pharmaceutical applications of polymorphism.
- (3) Describe solubility of partial miscible liquids in binary systems with suitable examples.
- 3. Solve any seven:

 $7 \times 5 = 35$

- Write a short note on glossy states.
- (2) Explain various factors affecting solubility of gases in liquids.
- (3) State and explain paradoxic solution.
- (4) Define Sublimation. Explain principle of sublimation in detail.

PANKH-52

4

- (5) What is BET equation? Write different types of isotherm.
- (6) What is HLB ? Explain various methods to determine HLB of surfactant.
- (7) Explain spreading coefficient and its significance.
- (8) What are complexes? Classify only complexation.
- Define propellant. Classify them with examples.
- (10) Describe diffusion principles in biological systems.

PANKH-52